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Abstract. Ice sheet models are often initialized with data assimilation of present-day conditions, in which unknown model

parameters are estimated using the inverse method. While assimilation of snapshot observations has been widely used for

regional and large scale ice sheet simulations, data assimilation based on time dependent data has recently started to emerge

to constrain model parameters while capturing the transient evolution of the system. However, this method has been applied

only to a few glaciers with fixed ice front positions, using spatially and temporally limited observations, and has not been5

applied to marine terminating glaciers of the Greenland ice sheet that have been retreating over the last 30 years. In this

study, we assimilate time series of surface velocity into a model of Kjer glacier in West Greenland to better capture the

observed acceleration over the past three decades. We compare snapshot and transient inverse methods and investigate the

impact of initialization procedures on the parameters inferred, as well as model projections. We find that transient-calibrated

simulations better capture past trends and better reproduce changes after the calibration period, even when a short period of10

observations is used. The results show the feasibility and clear benefits of a time-dependent data assimilation for initializing

ice sheet models. This approach is now possible with the development of longer observational records, though it remains

computationally challenging.

1 Introduction

Mass loss from polar ice sheets has been contributing ∼0.7 mm/year to global sea-level rise over the past 30 years, and this15

trend is expected to continue over the next century and beyond (e.g., Mouginot et al., 2019; Rignot et al., 2019; Shepherd et al.,

2018; Pörtner et al., 2019). To estimate the future contribution of ice sheets to sea-level rise, accurate mass balance projections

should be carried out using physics-based numerical models validated against observational data. A lot of progress has been

made in ice sheet modeling over the past decades (e.g., Goelzer et al., 2017; Pattyn, 2017) to better capture the present-day

state of the ice sheets (Goelzer et al., 2018; Seroussi et al., 2019) and project their future changes. The recent results from20

the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6, Nowicki et al., 2016; Seroussi et al., 2020; Goelzer et al.,

2020) demonstrate such improvements, but also highlight that many ice sheet model simulations do not capture the mass loss

of the Greenland and Antarctic ice sheets observed over the past 30 years (Aschwanden et al., 2021). Although the ISMIP6

1

https://doi.org/10.5194/tc-2023-64
Preprint. Discussion started: 11 May 2023
c© Author(s) 2023. CC BY 4.0 License.



experiments provide improved understanding of ice sheet model variability and the different sources of uncertainty, the models’

ability to estimate the current state and recent changes of these ice sheets need to be improved to increase our confidence in the25

accuracy of these models and to provide more reliable projections.

Typically, model representation of the present-day state of ice sheets and estimation of unknown model parameters have

been accomplished using either paleo-climate reconstructions or data assimilation. Paleo-climate reconstructions (e.g., Pollard

and DeConto, 2009; Aschwanden et al., 2016; Goelzer et al., 2017) simulate the evolution of ice sheets over long periods, for

example since the last glacier maximum, but often fail at accurately capturing their present-day configuration. Data assimilation30

(e.g., MacAyeal, 1992; Morlighem et al., 2010), on the other hand, generally consists of time-independent inversions (“snapshot

inversion”) of model parameters at a given time, without including changes in ice dynamics and ice geometry. It captures the

state of an ice sheet at the time of the “snapshot” but does not necessarily reproduce observed temporal trends. In snapshot

inversions, a cost function that measures the difference between observed and simulated values is minimized, based on an

“adjoint method”, which consists of deriving the gradient of the cost function with respect to the unknown, spatially variable35

parameter. Once the gradient is computed, a standard gradient descend method can be used to minimize the cost function (e.g.,

MacAyeal, 1993b). While mathematically and computationally challenging, a lot of progress has been made in understanding

basal friction and ice shelf rheology using this method (e.g., Larour et al., 2005; Khazendar et al., 2007; Joughin et al., 2009).

Snapshot inversions can reproduce a given state of the ice sheet at a single point in time (Morlighem et al., 2013; Gillet-

Chaulet et al., 2012), but they can also carry artificial drifts from the initial state of the model, displaying nonphysical artifacts40

in transient simulations rather than actual trends (Seroussi et al., 2011; Goldberg et al., 2015). To overcome this limitation,

modelers have mostly relied on short relaxations (typically a few years), but the required data and periods over which these

relaxations should be performed is not clear. Furthermore, relaxing models over a few years or decades can introduce a large

deviation from the current ice sheet state (Gillet-Chaulet et al., 2012; Lee et al., 2015).

Alternatively, data assimilation based on automatic differentiation (AD) started to be developed for ice sheet modeling over45

the past decade to constrain ice flow models over a given period of time using a larger number of observations (Goldberg and

Heimbach, 2013; Larour et al., 2014). This method makes it possible to not only estimate the state of the ice at a given point in

time, but also to better capture its evolution during the assimilation period by including time-dependent data (Goldberg et al.,

2015). AD provides the tools to automatically generate the source code that computes the derivatives of any cost function with

respect to any spatially and/or temporally variable model input from code that solves the direct problem. This allows building50

time-dependent cost functions and inversion of unknown parameters of transient simulations. This method has been widely

applied to ocean and atmospheric circulation models for over 20 years (e.g. Wunsch, 2006; Heimbach and Bugnion, 2009) but

it is only starting to emerge in ice sheet modeling.

Larour et al. (2014) and Goldberg et al. (2015) introduced data assimilation approach based on AD to invert for poorly

constrained variables in ice sheet model. Larour et al. (2014) inferred surface mass balance and basal friction of the Northeast55

Greenland Ice Stream (NEGIS) using surface altimetry data, while Goldberg et al. (2015) calibrated friction coefficient, bound-

ary stresses, and boundary volume flux based on assimilation of time-varying elevation and velocity of Pope, Smith and Kohler

glaciers in West Antarctica. Although both studies showed promising results in inferring forcings and boundary conditions that
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yielded the best fit to certain observations, they did not evaluate the models’ ability to predict future changes of glaciers. More

recently, Goldberg and Holland (2022) initialized a coupled ice sheet-ocean model fitting to velocities and thinning trends60

and estimated the relative importance of initialization for future projections. Those studies, however, used a relatively short

period of about 10 years of observed data with limited spatial coverage, therefore limiting their model domains. Furthermore,

Goldberg et al. (2019) used AD to investigate the impact of spatial patterns of ice shelf melt on Smith Glacier in the Amundsen

Sea Sector. Morlighem et al. (2021) expanded on this study by generating sensitivity maps of the ice volume above flotation to

changes in external forcings and boundary conditions for glaciers in the Amundsen Sea Sector. Those studies help determine65

where changes in different factors would have the largest effect on the mass balance of glaciers and provide guidance on the

areas where future geophysical fieldwork should be focused.

The wealth of newly available observations and longer observational periods (Fahnestock et al., 2016; Mouginot et al.,

2017; Gardner et al., 2019) now allow for expansion upon previous studies, offering better assessment of transient inversion

procedures and guidance on model initialization. Here we present the results of inversions that make use of a time series of70

observations on Kjer glacier, West Greenland (Fig. 1). We choose this glacier as the target region for our experiments due to

data availability and its recent evolution. The bed topography is relatively well constrained in this region (Morlighem et al.,

2017) and ice front positions, as well as velocity data, are available for this glacier from 1985 (Gardner et al., 2019; Wood

et al., 2021). After a period of relative stability in the 1980s, Kjer glacier has been continuously retreating from 1995 and has

experienced ∼6 km of retreat while more than tripling in velocity over the past decade (Wood et al., 2021). These changes75

present a well constrained scenario for investigating the impact of data availability on reproducing recent changes of marine

terminating outlet glaciers. To our knowledge, transient inversions based on AD have not been applied to marine terminating

glaciers of Greenland that require moving boundary capabilities in the ice flow model. The purpose of this study is to estimate

and assess the ability of the ice model initialization process based on the transient inversion to better capture observed changes

in a real glacier case, and to investigate the impact of initialization procedures and observational data on future projections.80

We first describe the observations and the model setup used in the study, along with detailed information on cost functions

and the inverse method (Sec. 2). We then present a suite of experiments that investigate the impact of observational data

and parameter choices in the initialization procedure on the model’s ability to reproduce these observations and short term

projections (Sec. 3). We continue with discussion (Sec. 4) and conclusions (Sec. 5) on the implications of our method towards

hindcasts and projections of ice sheet evolution.85

2 Data and model

2.1 Observations

Our model domain covers the catchment basin of Kjer glacier. The main branch of Kjer glacier retreated continuously from

1985 to 2007 (Wood et al., 2021) with a fairly slow and regular increase in velocity during that period (Gardner et al., 2019).

After 2007, the retreat accelerated and the velocity of the center line increased by more than three times. In response to this90

acceleration, the glacier thinned ∼50 m over an 11-year period. To initialize the model of Kjer glacier, we use surface and
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Figure 1. (a) Surface velocity of Kjer glacier, northwest Greenland, in 2007 (Gardner et al., 2019). The black line shows the center-line of

Kjer glacier and colored triangles denote the locations of points used for velocity comparison in Figure 3, 5 and 7. (b) Bedrock topography

(Morlighem et al., 2019) of the same region with observed ice front positions (Wood et al., 2021) from 1985 to 2018. Inset shows the location

of Kjer Glacier.

bed elevation from BedMachine v3 Morlighem et al. (2017). We use the geothermal heat flux from Greve (2019) and surface

temperature from RACMO2.3p2 (Noël et al., 2018) to calculate the steady-state glacier temperature used for the initial state in

our experiments. We then force the model using the surface mass balance from RACMO2.3p2 (Noël et al., 2018) and observed

ice front positions (Wood et al., 2021). In simulations where calving is allowed (described below), undercutting rates derived95

from thermal forcing are from Wood et al. (2021).

We use two observational datasets for the cost functions defined in section 2.4: ice velocities and ice front positions. Surface

velocities are from the ITS_LIVE project (Gardner et al., 2019); the annual mean surface velocities between 1985 and 2018

are derived from Landsat imagery. Spatial coverage varies each year but is nearly complete for the years following the launch

of Landsat 8 in 2013. The annual ice front positions from Wood et al. (2021) are used to either force the ice front positions or100

to measure the misfit of modeled and observed ice front positions in the cost function.

2.2 Model setup

We use the Ice-sheet and Sea-level System Model (ISSM, Larour et al., 2012) to simulate the evolution of Kjer glacier based on

the shelfy-stream approximation (SSA, MacAyeal, 1989), a simplification of the Stokes equations describing the stress balance

of an ice sheet, which greatly reduces computational expense while being valid for fast flowing areas, such as outlet glaciers of105

Greenland. We use the SSA due to high memory requirement of the CoDiPack library (Sagebaum et al., 2019) used in ISSM

for AD computation (Morlighem et al., 2021). The mesh resolution of our domain varies from 500 m near the coast to 20 km

inland, resulting in ∼8,000 elements.

The basal shear stress, τb, is described by a modified Regularized Coulomb friction law, as it has been shown to better

reproduce observed acceleration of glaciers, including Kjer glacier, compared to other friction laws (Joughin et al., 2019; Choi110

et al., 2022). The equation describing the Regularized Coulomb friction law is:

τb = CN
|ub|

1
m−1ub

(|ub|+ kNm)
1
m

(1)
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where C is a friction parameter that we invert for in this study, N the effective pressure, ub the ice basal velocity, and m the

velocity exponent that is set to 3 in this study. We assume that N is equal to the ice pressure above hydrostatic equilibrium

and define k such that kNm is equal to 300 m/yr, corresponding to a velocity threshold used to mark the transition between115

Weertman and Coulomb friction regimes (Joughin et al., 2019).

The ice viscosity is defined using Glen’s law (Glen, 1955):

µ =
B

2ε̇
1− 1

n
e

(2)

where B is the ice viscosity parameter, ε̇e the effective strain rate, and n Glen’s law exponent set equal to 3.

To simulate the evolution of calving fronts, we use the von Mises tensile stress calving law (Morlighem et al., 2016) to120

calculate the calving rate at each time step (Choi et al., 2018). The calving rate, c, is assumed to be proportional to the tensile

von Mises stress, σ̃, which accounts only for the tensile component of the stress in the horizontal plane:

c = ∥v∥ σ̃

σmax
(3)

with

σ̃ =
√

3 B ˜̇ε1/n
e (4)125

where σmax is a stress threshold that is calibrated to fit observations and ˜̇εe is the effective tensile strain rate as described in

previous studies (Morlighem et al., 2016; Choi et al., 2018).

2.3 Inverse method

We use the term “snapshot inversion” to refer to the inverse method using a single-time observation and “transient inversion”

when using observational data at multiple times in a time-evolving simulation. To invert for unknown parameters in the model,130

we minimize cost functions that capture the misfit between modeled and observed fields, by computing the gradient of the

cost function with respect to corresponding control parameters and applying a gradient descent method (Morlighem et al.,

2010). For the snapshot inversions, the gradient is calculated analytically and used in the adjoint method. This approach has

been widely applied in glaciology due to the fact that the stress balance equations of ice flow are considered self-adjoint

when the dependence of ice viscosity on strain rates is ignored (e.g., Morlighem et al., 2013). For the transient inversions,135

however, gradients cannot be calculated analytically; they require a time-dependent adjoint model, which can be done with

AD (Griewank and Walther, 2008). ISSM uses the overloaded operator framework of the CoDiPack library (Sagebaum et al.,

2019), in which the operations are recorded in memory and a single reverse sweep is performed with the chain rule to compute

the gradient of the cost function with respect to poorly-constrained model inputs.

Here, using a transient inversion, we invert for the friction coefficient and ice viscosity parameter over the entire model140

domain, similar to what is commonly done in ice sheet modeling (MacAyeal, 1993a; Rommelaere and MacAyeal, 1997).

These two quantities are spatially variable and are either assumed to be constant in time, or temporally variable depending

on the experiment as described below. We also infer the calving parameter σmax for simulations using evolving calving front
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positions: this parameter is also spatially variable but assumed to be constant in time. This approach allows to better understand

the physical processes involved in reproducing the state of the ice stream at a given time and the time-evolving state that145

accounts for the transient nature of observations.

2.4 Cost function

We use several cost functions to quantify the misfit between model and observations. For snapshot inversions, we define a cost

function that measures the misfit between observed (vobs) and modeled velocity (v) for a given time as:

Js(C,B) = γ1

∫

Γs

1
2
∥v−vobs∥2 dΓs + γ2

∫

Γs

1
2
ln

( ∥v∥+ ε

∥vobs∥+ ε

)2

dΓs + γ3 R(C,B) (5)150

where ε is a minimum velocity to avoid singularities, and Γs is the ice surface. The first term is the mean square error, the

second term quantifies the difference between the observed and modeled velocity on a logarithmic scale, and the third term

(R) is a regularizing term that penalizes large gradients in the inferred parameter to avoid overfitting. γi (where i = 1...3) are

weight parameters calibrated by L-curve analyses (Hansen, 2000) .

For transient inversions, we define a cost function that quantifies the spatio-temporal misfit between the model and observa-155

tions. The cost function includes time series of surface velocities as:

Jt1(C,B) = γ1

∑

ti

∫

Γs

1
2
∥v(t)−v(t)obs∥2 dt dΓs + γ2

∑

ti

∫

Γs

1
2
ln

( ∥v(t)∥+ ε

∥v(t)obs∥+ ε

)2

dt dΓs + γ3 R(C,B) (6)

where ti represents the years for which we have partial or complete velocity coverage. We use this cost function to simultane-

ously invert for the friction coefficient (C) and ice viscosity parameter (B) that best fit the observations.

Additionally, we define a cost function that measures the misfit between the observed and modeled ice front positions,160

represented by the level-set field (l) in ISSM (Bondzio et al., 2016), as:

Jt2(σmax) = γ4

∑

ti

∫

Γs

1
2
∥l(t)− l(t)obs∥2 dt dΓs

(7)

where γ4 is the weight parameter. We use this cost function to invert for the stress threshold (σmax) in the calving law.

3 Experiments and results

Here we present a series of experiments to assess the model initialization capabilities using transient inversion and the role165

of the initialization procedure and observational data (Table 1). We first compare initialization methods, namely snapshot and

transient inversions, and their ability to accurately predict the acceleration and mass loss of Kjer glacier. Next, we explore

the impact of the length of the initialization period and the time dependence of control parameters on model initialization and

6
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Table 1. List of experiments, control variables, observations and calibration periods. Controls that vary in time are shown as functions of t

(e.g., C is a static friction coefficient whereas C(t) is temporally variable).

Experiment Name Control variables Cost function Calibration period

SI (Snapshot inversion) C Js 2007

TI (Transient inversion) C, B Jt1 1985-2007

TI_PD1 C, B Jt1 1992-2007

TI_PD2 C, B Jt1 1997-2007

TI_PD3 C, B Jt1 2002-2007

TI_CTR1 C, B Jt1 1985-2018

TI_CTR2 C(t), B Jt1 1985-2018

TI_CTR3 C, B(t) Jt1 1985-2018

TI_CTR4 C(t), B(t) Jt1 1985-2018

TI_Calving σmax Jt2 1985-2018

projection results. For model initialization and projection, we force the position of the ice front with observations to reduce

the impact of errors introduced by the calving law in the modeled ice front positions. Finally, we investigate the possibility of170

expanding our initialization capabilities to include the stress threshold of the calving law as an additional control parameter by

allowing for front migration in the model. Experiment details are summarized in Table 1.

3.1 Comparison of snapshot and transient inversions

We first compare the models’ predictive skills for simulations initialized with snapshot and transient inversions. Projections

start in 2007, the year in which the Greenland Ice Mapping Project (GIMP, Howat et al., 2014) provides a complete spatial175

mapping of surface elevation. We initialize two simulations using either snapshot inversion in 2007 (exp. SI) or transient

inversion over the 1985-2007 period (exp. TI).

For the snapshot inversion, we invert for the friction coefficient (C in Eq. 1) using the cost function Js (Eq. 5) with 2007

velocities and estimate the ice viscosity parameter (B) from modeled ice temperature. Ice temperature is calculated based on

the enthalpy formulation (Aschwanden et al., 2012; Seroussi et al., 2013), using geothermal heat flux from Greve (2019) and180

surface temperature from RACMO2 (Noël et al., 2018). We deduce B from the modeled temperature, using the temperature-

dependent relationship table from Cuffey and Paterson (2010).

For the transient inversion, starting with the inferred friction coefficient from the snapshot inversion and the temperature-

based viscosity parameter as initial values, we simultaneously optimize the friction coefficient and viscosity parameter by

minimizing the cost function Jt1 (Eq. 6). We use the observed velocities from 1985 to 2007 in this cost function, forcing the185
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Figure 2. Difference between observed and modeled velocities (observation minus model) in 2007. (a) snapshot inversion (SI), (b) transient

inversion (TI) calibrated with velocity data. Observed velocities are from Gardner et al. (2019)
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Figure 3. Comparison of observed (triangles, Gardner et al. (2019)) and modeled (lines) velocities for experiments with (a) snapshot inversion

(SI) and (b) transient inversion (TI) using a time series of velocity. Colors correspond to the triangle locations shown in Figure 1. The ice

front retreated inland of the red and yellow observation locations (triangles) in 2010 and 2016, respectively. The grey box indicates the period

of model calibration for TI.

model with surface mass balance and observed ice front positions for the same period. For this experiment, time-independent

control parameters are used in the optimization.

Once these inversions are performed, we run the models from 2007 to 2018 (i.e., beyond the hindcast period used to constrain

the models), forcing them with surface mass balance from RACMO2.3p2 (Noël et al., 2018) and observed ice front positions

(Wood et al., 2021) to limit uncertainties from calving parameterizations, and to focus on the role of initial conditions inferred190

from the inverse methods.
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mass changes and their uncertainties. The blue and red lines show modeled mass changes from SI and TI, respectively. The grey box shows

the period of model calibration for TI.

Both snapshot and transient inversions capture the observed 2007 velocity with good accuracy (Fig. 2). The root mean

squared error (RMSE) with observed velocities of 2007 for the catchment basin is 57 m/yr for the SI, slightly lower than the

RMSE from the TI (62 m/yr). The misfit to observed velocity is concentrated near the ice front and along the shear margins of

both branches of Kjer glacier. The transient inversion reduces this misfit along the shear margins although the overall misfit for195

the northern branches increases.

Figure 3 shows that the observed annual velocity of Kjer glacier more than triples from 2007 to 2018 along the ice stream.

This observed acceleration is not well captured by the SI (Fig. 3a): the modeled velocities are consistently slower than the

observed velocities, with a range of 92-99% of observed velocities in 2007 decreasing to 72-77% in 2016, indicating a failure

to capture the observed acceleration. However, TI shows a better agreement with observed changes in velocity (Fig. 3b): the200

modeled to observed velocity ratio in 2007 is 105-113% and between 92 and 105% in 2016.

The modeled changes in grounded ice mass during the 2007-2018 period are compared against the estimated changes in

mass for Kjer glacier from Mouginot et al. (2019) (Fig. 4). The snapshot-calibrated simulation underestimates the observed

mass loss over the past 11 years, likely due to the underestimation of the ice velocity. The model loses only 34 Gt of ice, while

the observed mass loss from 2007 to 2018 is 51±3.6 Gt. When the model is transiently-calibrated with velocity data from205

1985 to 2007, the changes in ice mass are well captured and remain within the error margin of observation during this period.

After 2007, the modeled mass loss remains in good agreement with observed mass loss although it is no longer within the error

margin of observation during 2013-2015.
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Figure 5. Same as Fig. 3 but with transient inversions using velocity data for (a) 1992-2007 (TI_PD1), (b) 1997-2007 (TI_PD2) and (c)

2002-2007 (TI_PD3).

3.2 Impact of observational period used in the transient inversion

Despite the significant increase in the amount of remote sensing observations over the past decade, there still remains large210

spatial and temporal gaps over the Greenland ice sheet (Gardner et al., 2019), especially prior to the launch of Landsat 8

in 2013. For glaciers with shorter observational records or when computational resources are limited to run AD over long

periods, the calibration period needed to initialize simulations should be investigated to determine the benefits of the transient

inversion approach. Using a relatively complete record of observations since 1985 for Kjer glacier, we investigate the impact

of the observational period used in the transient inversion on near-future projections. We compare the previous initialization,215

performed using 23 annual maps of surface velocity observations from 1985 to 2007, with transient inversions using the same

velocity datasets, but over reduced periods: 1) 1992-2007 (TI_PD1), 2) 1997-2007 (TI_PD2), and 3) 2002-2007 (TI_PD3),

respectively, to calibrate our control parameters. After the inversions, we run three additional simulations from 2007 to 2018

using the same external forcings (SMB and ice fronts) used in SI and TI and evaluate their performance in terms of matching

observations after 2007 (i.e. observations that were not “seen” by the model during the calibration period).220
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Figure 6. Same as Fig. 4 but based on transient inversions using velocity data for 1992-2007 (red, TI_PD1), 1997-2007 (yellow, TI_PD2)

and 2002-2007 (green, TI_PD3). The blue line shows modeled mass change from SI shown in Fig. 4. The grey box indicates the period of

model calibration for the transient inversion.

Figure 5 shows the modeled velocities with different calibration periods for transient inversions. The modeled velocities

from 2007 to 2018 are in better agreement with observations for all three transient-calibrated simulations, relative to the

snapshot-calibration run (SI). The ratios of modeled to observed velocities in 2016 are similar between the three simulations,

ranging between 90 and 104%. When only five years of observations are used in the cost function, the model overestimates

the acceleration closest to the calving front (red in Fig. 5c), where ice velocities are sensitive to the calving front retreat for225

2007-2010. This overestimated acceleration leads to a larger mass loss in the future simulation than in the others cases (Fig.

6). However, the modeled mass losses for all three simulations are still better captured, compared to the snapshot-calibration

run, regardless of the observational period used for the cost function.

3.3 Time dependent control parameters

Our transient inversion framework allows for the estimation of control parameters that vary not only in space, but also in time230

(Larour et al., 2014; Goldberg et al., 2015). In all previous calibration experiments, the control parameters were held constant in

time. We now investigate the impact of using time-dependent control parameters. To do this, we run three additional simulations

with temporally varying control parameters: 1) the viscosity parameter is time-invariant while the friction coefficient evolves

every year (TI_CTR2), 2) the friction parameter is assumed time-invariant, but the viscosity parameter B is allowed to vary

every year (TI_CTR3), and 3) both parameters are allowed to vary every year (TI_CTR4). Time-dependent parameters have235

constant values during each year (i.e., they are allowed to change at the beginning of each year). For these simulations, we use

all available annual velocity observations, from 1985 to 2018, to investigate the time dependence of control parameters during

both the stable and acceleration periods of Kjer glacier.
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Figure 7. Same as Fig. 3 but with transient inversions from 1985 to 2018 calibrating time-variant parameters: (a) static friction coefficient

and viscosity parameter (TI_CTR1), (b) transient friction coefficient and static viscosity parameter (TI_CTR2), (c) static friction coefficient

and transient viscosity parameter (TI_CTR3) and (d) transient friction coefficient and viscosity parameter (TI_CTR4).

Since the models in these simulations are calibrated with observed velocities from 1985 to 2018, the modeled velocities

during this period are all in a good agreement with observations (Fig. 7). To compare results between different simulations in240

more detail, we calculate the RMSE with observed annual velocities (Fig. 8). Although the RMSE values in 2017 and 2018 are

relatively higher than other years in all simulations, those values significantly decrease when both parameters are allowed to

vary in time. For other years, reductions in RMSE are relatively small compared to the one for the 2018 RMSE value.
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of static and transient controls (TI_CTRs). The mean error for each experiment is included in the legend. The black line represents the mean

annual error (Gardner et al., 2019) of observed velocities for the basin.

We compare the inverted viscosity parameter fields between simulations. Figure 9a shows the depth-averaged viscosity

parameter calculated from the thermal model, which was used in the snapshot inversion and as the initial value for transient245

inversions. We display changes in viscosity parameter at the end of each experiment, in 2018, compared to the initial viscosity

parameter. The initial viscosity parameter indicates softer ice in the shear margins compared to the center of the ice stream.

In the transient inversion-based simulations, the viscosity parameter in the shear margins decreases by up to 45% to match

observed accelerations (Fig. 9b-d). The decrease in viscosity parameter also occurs upstream, but the reduction is relatively

small. The spatial patterns of the reduction in the viscosity parameter are similar between transient inversions, regardless of250

the time dependency of parameter, indicating a similar impact of changes in rheology on ice velocity.

The initial basal stress in 1985 and changes in basal stress during the calibration period are shown in Figure 10. The spatial

patterns of initial basal stress are similar for all simulations with the exception of TI_CTR1 that exhibits smoother patterns

of basal drag. When both control parameters are static in time, the basal stress starts to decrease near the margin and keeps

decreasing along ∼15 km of the ice stream by up to 50% until 2018. This pattern of changes in basal stress is similar to255

the result with the static friction coefficient and the varying viscosity parameter (Fig. 10). For simulations with a transient

friction coefficient, however, the basal stress field shows unrealistic changes during the calibration period, suggesting that it is

overfitting the observations.
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Figure 9. (a) Depth-averaged viscosity parameter, B, in 2018 from the thermal model used in the snapshot inversion. (b,c,d) Difference in

2018 viscosity parameter compared to thermal model for transient inversion based simulations: (b) static friction coefficient and rheology

parameter experiment (TI_CTR1), (c) static friction coefficient and transient rheology parameter experiment (TI_CTR3), and (d) transient

friction coefficient and rheology parameter experiment (TI_CTR4).

3.4 Optimization of calving law parameter

Calving is a critical process that controls the dynamics of marine terminating glaciers (e.g., Rignot et al., 2013; Bondzio260

et al., 2017; Benn et al., 2007). In ice sheet models, calving is generally represented by a calving law that includes one or

more parameters that need to be calibrated (Choi et al., 2018). Calibrating these parameters is essential, not only to reproduce

observed changes of glaciers, but also to project future ice sheet changes with moving boundaries. We investigate here whether

the stress parameter (σmax) in a von Mises stress calving law (Morlighem et al., 2016) can be inferred from the observations as

part of the model initialization framework. Instead of forcing the ice front position to follow observed terminus migration, we265

now let a calving law determine a calving rate that dynamically changes the model boundary. To run this experiment, we use

here the model calibrated with the static friction coefficient and viscosity parameter from 1985 to 2018, and we use the cost

function Jt2 (Eq. 7) to calibrate spatially and temporally constant stress parameter, σmax, for 1985-2018. All other parameters

remain unchanged during the inversion.

Observations show that the main branch of Kjer glacier retreated continuously from 1985 to 2007 and slowed down at the270

location of a small ridge in the underlying bedrock. After 2007, it retreated past the ridge and continued retreating again until

2018. The northern branch of Kjer has been stable at the ridge until 2016 but the two branches merged into a single ice front

around 2017 when the main branch retreated towards the northern branch. The calibrated model reproduces the observed retreat

of the main branch relatively well compared to the northern branch (Fig. 11). The model could not reproduce the retreat of
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Figure 10. Evolution of basal stress between 1985 and 2018. First column: basal stress from static friction coefficient and viscosity pa-

rameter experiment (TI_CTR1). (a1) Basal friction in 1985 and (b1,c1,d1) changes in basal stress, compared to 1985, in indicated years.

(a2,b2,c2,d2) Second column: basal stress and its change from transient friction coefficient and static viscosity parameter experiment

(TI_CTR2). (a3,b3,c3,d3) Third column: basal stress and its change from transient friction coefficient and static viscosity parameter ex-

periment (TI_CTR3). (a4,b4,c4,d4) Last column: basal stress and its change from transient friction coefficient and viscosity parameter

experiment (TI_CTR4).

the northern branch, similar to the recent modeling study of Choi et al. (2021). The calibrated value of stress threshold for the275

main branch, σmax = 320 kPa, is similar to the value σmax = 306 kPa, determined with manual calibration for the 2007-2018

period in Choi et al. (2021).

4 Discussion

In this study, we explored the benefits of transient inversions to initialize ice flow simulations as well as the impact of the ob-

servation period used and choices made for control parameters. The snapshot inversion reproduces the observed 2007 velocity280

slightly more accurately than the transient inversion because the snapshot inversion optimizes the model to the 2007 velocity

only, while the transient inversion calibrates the model to observational data over multiple years. The model calibrated with
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Figure 11. Modeled ice front positions simulated from transient inversion for calving law parameter (TI_Calving).

the transient inversion better reproduces the time-varying behavior of the glacier during the initialization, which improves the

model’s ability to provide realistic near-future projections.

To validate our approach and determine its potential applicability to other glaciers, we conducted additional simulations for285

Sverdrup glacier, which is located near Kjer Glacier but has exhibited different behavior over the past 30 years. Unlike Kjer

Glacier, Sverdrup was stable until 2000 and has since experienced a relatively steady acceleration for about 20 years (Fig. 12).

When the model is calibrated using the snapshot inversion, the observed acceleration of Sverdrup Glacier’s centerline from

2007 to 2018 is overestimated, with modeled velocities being over 20% faster than the observations beginning in 2011. How-

ever, the transient-calibrated simulation, which used velocities from 1985 to 2007, better replicates the observed changes after290

2007, with the modeled velocities remaining within 10% of the observed velocities until 2016. While this simulation also over-

estimates the velocities for 2017-2018, other factors (e.g., ice front retreat) may have contributed to changes in velocity beyond

friction and rheology. Overall, these results for Sverdrup Glacier are consistent with those for Kjer Glacier, demonstrating that

the transient-calibrated simulations better reproduce observations and provide more confidence in near-future projections than

the snapshot-calibrated simulations.295

Our TI_PD experiments show that all projections based on the transient inversion provide an improved agreement with

observations relative to those based on a snapshot inversion, even when the calibration period is only a few years. Although

there were limited changes in velocity during the short calibration period, the model initialized with transient calibration can

still capture a significant acceleration after the calibration period. These results demonstrate that the simulations based on the

transient inversion can enhance our confidence in near-future projections, even with a limited period of observations and when300

these observations include limited variability to properly calibrate the model. With the continuous extension of observational

records capturing recent changes in glaciers, the method presented here can be applied broadly to other glaciers to provide

more reliable near-future projections.
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Figure 12. Same as Fig.3 but for Sverdrup Glacier. Inset shows the location of Sverdrup Glacier.

AD is a lot more memory intensive than solving for the adjoint state explicitly or forward runs, which may limit the appli-

cation of this approach to regional simulations or ice-sheet wide scale models with very coarse mesh resolution (Morlighem305

et al., 2021). We additionally set up one simple experiment to investigate the scalability of the framework and the possibility

to infer parameters on a coarse mesh and use them on a finer mesh. We interpolate the control parameter fields (i.e., C and B)

optimized with the transient inversion of our model (TI) above to a new finer resolution mesh domain (100 m - 5 km, ∼36,000

elements) and assess the new model performance to project future changes of the glacier (Fig. 13). The results show that the

observed acceleration (94-105 % modeled to observed velocity ratio in 2007) and mass loss from 2007 to 2018 (42 Gt) are310

better captured in the higher resolution model with parameters interpolated from the coarse resolution transient-inversion than

in the simulation based on the snapshot inversion (SI). These results suggest that the optimized parameters based on the coarse

resolution transient inversion could remain somewhat robust in a finer resolution model, which is consistent with results from

Barnes et al. (2021). Additional work on scalability of the framework should be conducted along with improvement of memory

capability and code efficiency to be able to generalize AD to ice sheet-wide simulations, but these results suggest a possible315

avenue to use AD in larger domains.

While transient inversions can potentially constrain time-varying, poorly-known control parameters, a clear justification

with physical constraints are needed. In this study, we allowed each parameter to vary every year arbitrarily. Our results

from TI_CTR experiments show that allowing for time-varying control parameters only provides a small improvement of

fit and causes the model to overfit the observations, which is consistent with results from Goldberg et al. (2015). This is a320

recurring problem in inverse modeling: a larger control space will lead to a better fit to the observations but at the expense

of potentially unrealistic changes in control parameters.To avoid overfitting, more observations and physical interpretations

are needed to better constrain temporal changes of these parameters. Additionally, further research is needed to identify the
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modeled (red) mass changes relative to 2007 based on transient inversions. The blue line shows modeled mass change from SI shown in Fig.

4.

criteria to distinguish overfitting from observation-based uncertainties, although our model fit mostly falls within the range of

observation error.325

In previous studies (e.g., Morlighem et al., 2016; Choi et al., 2018; Yu et al., 2019; Choi et al., 2021), calving laws have

been calibrated by running transient simulations multiple times, manually adjusting the calving parameter and comparing to

observed changes in ice front positions. In the framework presented in this study, however, optimizing the calving parameter

can be done more efficiently, as the inversion automatically iterates to find the best fit to observations. For the TI_Calving

experiment, we invert for the calving parameter after optimizing other control parameters, friction coefficient and rheology330

parameter, rather than inverting for three control parameters simultaneously. We ran additional simulations (not shown here) to

investigate the possibility for the simultaneous inversion for three control parameters using the sum of transient cost functions,

Jt3(v(t)) = Jt1(v(t)) +Jt2(v(t)). The calibrated parameters depend strongly on choices of weights for each misfit term

(e.g., γ1, γ2 and γ3), which leads to several solutions for control parameters. Further research is required to better constrain

these control parameters and investigate the best method to simultaneously infer a large number of parameters, as is done, e.g.,335

for ocean state estimates (Forget et al., 2015).
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5 Conclusions

In this study, we compare model initializations performed using snapshot and transient inversions to reproduce the recent

changes of Kjer glacier, West Greenland. We assess the impact of several cases for model initialization and future projections

by conducting a suite of experiments using observational data from 1985 to 2018. These experiments show that simulations340

based on transient inversions better captured the current trend of changes in glacier and performed better for near-future

projections, even when a short period of observations is used to constrain the simulation. Unlike the static inversion that

optimizes the model to a single moment in time, the transient inversion optimizes the model to fit multiple years of data,

requiring the model to capture temporal variability in glacier flow. In the case of Kjer Glacier, this is achieved by softening

the ice near the shear margins. This softening of the ice allows the model to better capture the glacier acceleration that occurs345

after the calibration period. Although large spatial and temporal variability in control parameters could improve the model fit to

observations, clear physical justification should be made to avoid overfitting. Additional experiments show that we can expand

our initialization capabilities to infer calving parameters, or use data assimilation on a coarse model and interpolate results onto

a higher resolution model. The methodology of transient inversion introduced in this study – which has not previously been

applied to Greenland tidewater glaciers – could be applied to other regions of Greenland and to the ice-sheet wide scale model,350

which will take advantage of the wealth of remote sensing data that is currently available and will be available in the future.
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